Friday, September 22, 2017

National Bank of Poland

It strikes me that I'm seeing progressively more research in dynamic predictive modeling from the National Bank of Poland.  A few recent examples appear below.  Related information is here.  Nice job.

AuthorTitle
Karol Szafranek
Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks
Date
Number
Download
2017
262
 (PDF)

AuthorTitle
Siem Jan Koopman
André Lucas
Marcin Zamojski

Dynamic term structure models with score-driven time-varying parameters: estimation and forecasting
Date
Number
Download
2017
258
 (PDF)

AuthorTitle
Piotr Bańbuła
Marcin Pietrzak

Early warning models of banking crises applicable to non-crisis countries
Date
Number
Download
2017
257
 (PDF)

AuthorTitle
Alessia Paccagnini
Forecasting with FAVAR: macroeconomic versus financial factors
Date
Number
Download
2017
256
 (PDF)

AuthorTitle
Paweł Pońsko
Bartosz Rybaczyk

Fan chart – a tool for NBP’s monetary policy making
Date
Number
Download
2016
241
 (PDF)

AuthorTitle
Halina Kowalczyk
Ewa Stanisławska

Are experts’ probabilistic forecasts similar to the NBP projections?
Date
Number
Download
2016
238
 (PDF)

Sunday, September 17, 2017

Machine Learning Meets Central Banking

Here's a nice new working paper from the Bank of England.  There's nothing new methodologically, but there are three fascinating and detailed applications / case studies (banking supervision under imperfect information, UK CPI inflation forecasting, unicorns in financial technology).  For your visual enjoyment I include their Figure 19 below.  (It's the network graph for global technology start-ups in 2014, not spin-art...)

Monday, September 11, 2017

2017 NBER-NSF Time Series Meeting

Just back from 2017 NBER-NSF Time Series at Northwestern.  Quite a feast -- my head is spinning.  Program dumped below; formatted version here.  Many thanks to the program committee for producing this event, and more generally for keeping the series going, year after year, stronger than ever.  (See here for some history and links to past locations, programs, etc.)

The papers were very strong.  Among those that I found particularly interesting are:

-- Moon.  Forecasting in short panels.  You'd think it would be impossible since you need the individual effects.  But it's not.

“Forecasting with Dynamic Panel Data Models”, Hyungsik Roger Moon (University of Southern California), Laura Liu, and Frank Schorfheide

-- Shephard.  Causal estimation meets time series.

“Time series experiments, causal estimands and exact p-values”, Neil Shephard (Harvard University) and Iavor Bojinov

-- The entire (and marvelously-coherent) "Lumsdaine Sesssion" (Pruitt, Pelger, Giglio).  Real progress on econometric methods for identifying financial-market risk factors, with sharp empirical results. 

“Instrumented Principal Component Analysis”, Seth Pruitt (Arizona State University), Bryan Kelly, and Yinan Su
“Estimating Latent Asset-Pricing Factors”, Markus Pelger (Stanford University) and Martin Lettau

“Inference on Risk Premia in the Presence of Omitted Factors”, Stefano Giglio (University of Chicago) and Dacheng Xiu



------------------

2017 NBER-NSF Time Series Conference
Friday, September 8 – Saturday, September 9
Kellogg School of Management
Kellogg Global Hub
2211 N Campus Drive; Evanston, IL 60208
Friday, September 8
Registration begins 10:20am (White Auditorium)
Welcome and opening remarks: 10:50am
Session 1: 11:00am – 12:30pm
Chair: Ruey S. Tsay (University of Chicago)
 “Egalitarian Lasso for Shrinkage and Selection in Forecast Combination” Francis X. Diebold (University of Pennsylvania) and Minchul Shin
 “Forecasting with Dynamic Panel Data Models” Hyungsik Roger Moon (University of Southern California), Laura Liu, and Frank Schorfheide
 “Large Vector Autoregressions with Stochastic Volatility and Flexible Priors” Andrea Carriero (Queen Mary University of London), Todd E. Clark, and Massimiliano Marcellino
12:30pm - 2:00pm: Lunch and Poster Session 1 (Faculty Summit, 4th Floor)
 “The Dynamics of Expected Returns: Evidence from Multi-Scale Time Series Modeling“ Daniele Bianchi (University of Warwick)
 “Testing for Unit-root Non-stationarity against Threshold Stationarity” Kung-Sik Chan (University of Iowa)
 “Group Orthogonal Greedy Algorithm for Change-point Estimation of Multivariate Time Series” Ngai Hang Chan (The Chinese University of Hong Kong)
 “The Impact of Waiting Times on Volatility Filtering and Dynamic Portfolio Allocation” Dobrislav Dobrev (Federal Reserve Board of Governors)
 “Testing for Mutually Exciting Jumps and Financial Flights in High Frequency Data” Mardi Dungey (University of Tasmania), Xiye Yang (Rutgers University) presenting
 “Pockets of Predictability” Leland E. Farmer (University of California, San Diego)
 “Factor Models of Arbitrary Strength” Simon Freyaldenhoven (Brown University)
 “Inference for VARs Identified with Sign Restrictions” Eleonora Granziera (Bank of Finland)
 “The Time-Varying Effects of Conventional and Unconventional Monetary Policy: Results from a New Identification Procedure” Atsushi Inoue (Vanderbilt University)
 “On spectral density estimation via nonlinear wavelet methods for non-Gaussian linear processes” Linyuan Li (University of New Hampshire)
 “Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting” Kenichiro McAlinn (Duke University)
 “Periodic dynamic factor models: Estimation approaches and applications” Vladas Pipiras (University of North Carolina)
 “Canonical stochastic cycles and band-pass filters for multivariate time series” Thomas M. Trimbur (U. S. Census Bureau)
Session 2: 2:00pm - 3:30pm
Chair: Giorgio Primiceri (Northwestern University)
 “Understanding the Sources of Macroeconomic Uncertainty” Tatevik Sekhposyan (Texas A&M University), Barbara Rossi, and Matthieu Soupre
 “Safety, Liquidity, and the Natural Rate of Interest” Marco Del Negro (Federal Reserve Bank of New York), Domenico Giannone, Marc P. Giannoni, and Andrea Tambalotti
 “Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks” Christiane Baumeister (University of Notre Dame) and James D. Hamilton
Afternoon Break: 3:30pm-4:00pm
Session 3: 4:00pm – 5:30pm
Chair: Serena Ng (Columbia University)
 “Controlling the Size of Autocorrelation Robust Tests” Benedikt M. Pötscher (University of Vienna) and David Preinerstorfer
 “Heteroskedasticity Autocorrelation Robust Inference in Time Series” Regressions with Missing Data Timothy J. Vogelsang (Michigan State University) and Seung-Hwa Rho
 “Time series experiments, causal estimands and exact p-values” Neil Shephard (Harvard University) and Iavor Bojinov
5:30pm – 7pm: Cocktail Reception and Poster Session 2 (Faculty Summit, 4th Floor)
 “Macro Risks and the Term Structure of Interest Rates” Andrey Ermolov (Fordham University)
 “Holdings-based Fund Performance Measures: Estimation and Inference” Wayne E. Ferson (University of Southern California), Junbo L. Wang (Louisiana State University) presenting
 “Economic Predictions with Big Data: The Illusion of Sparsity” Domenico Giannone (Federal Reserve Bank of New York)
 “Estimation and Inference of Dynamic Structural Factor Models with Over-identifying Restrictions” Xu Han (City University of Hong Kong)
 “Bayesian Predictive Synthesis: Forecast Calibration and Combination” Matthew C. Johnson (Duke University)
 “Time Series Modeling on Dynamic Networks” Jonas Krampe (TU Braunschweig)
 “The Complexity of Bank Holding Companies: A Topological Approach” Robin L. Lumsdaine (American University)
 “Sieve Estimation of Option Implied State Price Density” Zhongjun Qu (Boston University) - Junwen Lu (Boston University) presenting
 “Linear Factor Models and the Estimation of Expected Returns” Cisil Sarisoy (Northwestern University)
 “Efficient Parameter Estimation for Multivariate Jump-Diffusions” Gustavo Schwenkler (Boston University)
 “News-Driven Uncertainty Fluctuations” Dongho Song (Boston College)
 “Contagion, Systemic Risk and Diagnostic Tests in Large Mixed Panels” Cindy S.H. Wang (National Tsing Hua University and CORE, University Catholique de Louvain)
7-10pm: Dinner (White Auditorium)
 Dinner speaker: Nobel Laureate Robert F. Engle
Saturday, September 9
Continental Breakfast: 8:00am – 8:30am
Registration begins 8:30am (White Auditorium)
Session 4: 9:00am – 10:30am
Chair: Thomas Severini (Northwestern University)
 “Estimation of time varying covariance matrices for large datasets” Liudas Giraitis (Queen Mary University of London), Y. Dendramis, and G. Kapetanios
 “Indirect Inference With(Out) Constraints” Eric Renault (Brown University) and David T. Frazier
 “Edgeworth expansions for a class of spectral density estimators and their applications to interval estimation” S.N. Lahiri (North Carolina State University) and A. Chatterjee
Morning Break: 10:30am-11:00am
Session 5: 11:00am-12:30pm
Chair: Robin L. Lumsdaine (American University)
 “Instrumented Principal Component Analysis” Seth Pruitt (Arizona State University), Bryan Kelly, and Yinan Su
 “Estimating Latent Asset-Pricing Factors” Markus Pelger (Stanford University) and Martin Lettau
 “Inference on Risk Premia in the Presence of Omitted Factors” Stefano Giglio (University of Chicago) and Dacheng Xiu
12:30pm-2pm: Lunch and Poster Session 3 (Faculty Summit, 4th Floor)
 “Regularizing Bayesian Predictive Regressions” Guanhao Feng (City University of Hong Kong)
 “Good Jumps, Bad Jumps, and Conditional Equity Premium” Hui Guo (University of Cincinnati)
 “High-dimensional Linear Regression for Dependent Observations with Application to Nowcasting” Yuefeng Han (The University of Chicago)
 “Maximum Likelihood Estimation for Integer-valued Asymmetric GARCH (INAGARCH) Models” Xiaofei Hu (BMO Harris Bank, N.A.)
 “Tail Risk in Momentum Strategy Returns” Soohun Kim (Georgia Institute of Technology)
 “The Perils of Counterfactual Analysis with Integrated Processes” Marcelo C. Medeiros (Pontifical Catholic University of Rio de Janeiro) and Ricardo Masini (Pontifical Catholic University of Rio de Janeiro)
 “Anxious unit root processes” Jon Michel (The Ohio State University)
 “Limiting Local Powers and Power Envelopes of Panel AR and MA Unit Root Tests” Katsuto Tanaka (Gakushuin University)
 “High-Frequency Cross-Market Trading: Model Free Measurement and Applications”
Ernst Schaumburg (AQR Capital Management, LLC) – Dobrislav Dobrev (Federal Reserve Board of Governors) presenting
 “A persistence-based Wold-type decomposition for stationary time series” Claudio Tebaldi (Bocconi University)
 “Necessary and Sufficient Conditions for Solving Multivariate Linear Rational Expectations Models and Factoring Matrix Polynomials” Peter A. Zadrozny (Bureau of Labor Statistics)
Session 6: 2:00pm – 3:30pm
Chair: Beth Andrews (Northwestern University)
 “Models for Time Series of Counts with Shape Constraints” Richard A. Davis (Columbia University) and Jing Zhang
 “Computationally Efficient Distribution Theory for Bayesian Inference of High-Dimensional Dependent Count-Valued Data” Scott H. Holan (University of Missouri, U.S. Census Bureau), Jonathan R. Bradley, and Christopher K. Wikle
 “Functional Autoregression for Sparsely Sampled Data”
Daniel R. Kowal (Cornell University, Rice University)

Monday, September 4, 2017

More on New p-Value Thresholds

I recently blogged on a new proposal heavily backed by elite statisticians to "redefine statistical significance", forthcoming in the elite journal Nature Human Behavior. (A link to the proposal appears at the end of this post.) 

I have a bit more to say. It's not just that I find the proposal counterproductive; I have to admit that I also find it annoying, bordering on offensive.

I find it inconceivable that the authors' p<.005 recommendation will affect their own behavior, or that of others like them. They're all skilled statisticians, hardly so naive as to declare a "discovery" simply because a p-value does or doesn't cross a magic threshold, whether .05 or .005. Serious evaluations and interpretations of statistical analyses by serious statisticians are much more nuanced and rich -- witness the extended and often-heated discussion in any good applied statistics seminar.

If the p<.005 threshold won't change the behavior of skilled statisticians like the proposal's authors, then whose behavior MIGHT it change? That is, reading between the lines, to whom is the proposal REALLY addressed?  Evidently those much less skilled, the proverbial "practitioners", who the authors evidently hope might be kept from trouble by a rule of thumb that can at least be followed mechanically.

How patronizing.


------


Redefine Statistical Significance

Date: 2017
By:
Daniel Benjamin ; James Berger ; Magnus Johannesson ; Brian Nosek ; E. Wagenmakers ; Richard Berk ; Kenneth Bollen ; Bjorn Brembs ; Lawrence Brown ; Colin Camerer ; David Cesarini ; Christopher Chambers ; Merlise Clyde ; Thomas Cook ; Paul De Boeck ; Zoltan Dienes ; Anna Dreber ; Kenny Easwaran ; Charles Efferson ; Ernst Fehr ; Fiona Fidler ; Andy Field ; Malcom Forster ; Edward George ; Tarun Ramadorai ; Richard Gonzalez ; Steven Goodman ; Edwin Green ; Donald Green ; Anthony Greenwald ; Jarrod Hadfield ; Larry Hedges ; Leonhard Held ; Teck Hau Ho ; Herbert Hoijtink ; James Jones ; Daniel Hruschka ; Kosuke Imai ; Guido Imbens ; John Ioannidis ; Minjeong Jeon ; Michael Kirchler ; David Laibson ; John List ; Roderick Little ; Arthur Lupia ; Edouard Machery ; Scott Maxwell; Michael McCarthy ; Don Moore ; Stephen Morgan ; Marcus Munafo ; Shinichi Nakagawa ; Brendan Nyhan ; Timothy Parker ; Luis Pericchi; Marco Perugini ; Jeff Rouder ; Judith Rousseau ; Victoria Savalei ; Felix Schonbrodt ; Thomas Sellke ; Betsy Sinclair ; Dustin Tingley; Trisha Zandt ; Simine Vazire ; Duncan Watts; Christopher Winship ; Robert Wolpert ; Yu Xie; Cristobal Young ; Jonathan Zinman ; Valen Johnson

Abstract: We propose to change the default P-value threshold for statistical significance for claims of new discoveries from 0.05 to 0.005.
http://d.repec.org/n?u=RePEc:feb:artefa:00612&r=ecm 

Sunday, August 27, 2017

New p-Value Thresholds for Statistical Significance

This is presently among the hottest topics / discussions / developments in statistics.  Seriously.  Just look at the abstract and dozens of distinguished authors of the paper below, which is forthcoming in one of the world's leading science outlets, Nature Human Behavior.

Of course data mining, or overfitting, or whatever you want to call it, has always been a problem, which has always warranted strong and healthy skepticism regarding alleged "new discoveries".  But the whole point of examining p-values is to AVOID anchoring on arbitrary significance thresholds, whether the old magic .05 or the newly-proposed magic .005.  Just report the p-value, and let people decide for themselves how they feel.  Why obsess over asterisks, and whether/when to put them next to things?

Postscript:

Reading the paper, which I had not done before writing the paragraph above (there's largely no need, as the wonderfully concise abstract says it all), I see that it anticipates my objection at the end of a section entitled "potential objections":
Changing the significance threshold is a distraction from the real solution, which is to replace null hypothesis significance testing (and bright-line thresholds) with more focus on effect sizes and confidence intervals, treating the P-value as a continuous measure, and/or a Bayesian method.
Here here! Marvelously well put.

The paper offers only a feeble refutation of that "potential" objection:
Many of us agree that there are better approaches to statistical analyses than null hypothesis significance testing, but as yet there is no consensus regarding the appropriate choice of replacement. ... Even after the significance threshold is changed, many of us will continue to advocate for alternatives to null hypothesis significance testing. 
I'm all for advocating alternatives to significance testing.  That's important and helpful.  As for continuing to promulgate significance testing with magic significance thresholds, whether .05 or .005, well, you can decide for yourself.

Redefine Statistical Significance
Date:2017
By:Daniel Benjamin ; James Berger ; Magnus Johannesson ; Brian Nosek ; E. Wagenmakers ; Richard Berk ; Kenneth Bollen ; Bjorn Brembs ; Lawrence Brown ; Colin Camerer ; David Cesarini ; Christopher Chambers ; Merlise Clyde ; Thomas Cook ; Paul De Boeck ; Zoltan Dienes ; Anna Dreber ; Kenny Easwaran ; Charles Efferson ; Ernst Fehr ; Fiona Fidler ; Andy Field ; Malcom Forster ; Edward George ; Tarun Ramadorai ; Richard Gonzalez ; Steven Goodman ; Edwin Green ; Donald Green ; Anthony Greenwald ; Jarrod Hadfield ; Larry Hedges ; Leonhard Held ; Teck Hau Ho ; Herbert Hoijtink ; James Jones ; Daniel Hruschka ; Kosuke Imai ; Guido Imbens ; John Ioannidis ; Minjeong Jeon ; Michael Kirchler ; David Laibson ; John List ; Roderick Little ; Arthur Lupia ; Edouard Machery ; Scott MaxwellMichael McCarthy ; Don Moore ; Stephen Morgan ; Marcus Munafo ; Shinichi Nakagawa ; Brendan Nyhan ; Timothy Parker ; Luis PericchiMarco Perugini ; Jeff Rouder ; Judith Rousseau ; Victoria Savalei ; Felix Schonbrodt ; Thomas Sellke ; Betsy Sinclair ; Dustin TingleyTrisha Zandt ; Simine Vazire ; Duncan WattsChristopher Winship ; Robert Wolpert ; Yu XieCristobal Young ; Jonathan Zinman ; Valen Johnson

Abstract:  
We propose to change the default P-value threshold for statistical significance for claims of new discoveries from 0.05 to 0.005.



http://d.repec.org/n?u=RePEc:feb:artefa:00612&r=ecm


Friday, August 25, 2017

Flipping the https Switch

I just flipped a switch to convert No Hesitations from http to https, which should be totally inconsequential to you -- you should not need to do anything, but obviously let me know if your browser chokes.  The switch will definitely solve one problem:  Chrome has announced that it will soon REQUIRE https.  Moreover, the switch may help with another problem.  There have been issues over the years with certain antivirus software blocking No Hesitations without a manual override.  The main culprit seems to be Kaspersky Antivirus.  Maybe that will now stop.

Sunday, August 20, 2017

Bayesian Random Projection (More on Terabytes of Economic Data)

Some additional thoughts related to Serena Ng's World Congress piece (earlier post here, with a link to her paper):

The key newish dimensionality-reduction strategies that Serena emphasizes are random projection and leverage score sampling.  In a regression context both are methods for optimally approximating an NxK "X matrix" with an Nxk X matrix, where k<<K. They are very different and there are many issues. Random projection delivers a smaller X matrix with columns that are linear combinations of those of the original X matrix, as for example with principal-component regression, which can sometimes make for difficult interpretation.  Leverage score sampling, in contrast, delivers a smaller X matrix with columns that are simply a subset of those of those of the original X matrix, which feels cleaner but has issues of its own.

Anyway, a crucial observation is that for successful predictive modeling we don't need deep interpretation, so random projection is potentially just fine -- if it works, it works, and that's an empirical matter.  Econometric extensions  (e.g., to VAR's) and evidence (e.g., to macro forecasting) are just now emerging, and the results appear encouraging.  An important recent contribution in that regard is Koop, Korobilis, and Pettenuzzo (in press), which significantly extends and applies earlier work of Guhaniyogi and Dunson (2015) on Bayesian random projection ("compression").  Bayesian compression fits beautifully in a MCMC framework (again see Koop et al.), including model averaging across multiple random projections, attaching greater weight to projections that forecast well.  Very exciting!

Monday, August 14, 2017

Analyzing Terabytes of Economic Data

Serena Ng's World Congress piece is out as an NBER w.p.  It's been floating around for a long time, but just in case you missed it, it's a fun and insightful read:

Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data
by Serena Ng  -  NBER Working Paper #23673.
http://papers.nber.org/papers/w23673


(Ungated copy at http://www.columbia.edu/~sn2294/papers/sng-worldcongress.pdf)

Abstract:

This paper seeks to better understand what makes big data analysis different, what we can and cannot do with existing econometric tools, and what issues need to be dealt with in order to work with the data efficiently.  As a case study, I set out to extract any business cycle information that might exist in four terabytes of weekly scanner data.  The main challenge is to handle the volume, variety, and characteristics of the data within the constraints of our computing environment. Scalable and efficient algorithms are available to ease the computation burden, but they often have unknown statistical properties and are not designed for the purpose of efficient estimation or optimal inference.  As well, economic data have unique characteristics that generic algorithms may not accommodate.  There is a need for computationally efficient econometric methods as big data is likely here to stay.

Saturday, August 12, 2017

On Theory, Measurement, and Lewbel's Assertion

Arthur Lewbel, insightful as always, asserts in a recent post that:
The people who argue that machine learning, natural experiments, and randomized controlled trials are replacing structural economic modeling and theory are wronger than wrong.
As ML and experiments uncover ever more previously unknown correlations and connections, the desire to understand these newfound relationships will rise, thereby increasing, not decreasing, the demand for structural economic theory and models.
I agree.  New measurement produces new theory, and new theory produces new measurement -- it's hard to imagine stronger complements.  And as I said in an earlier post,
Measurement and theory are rarely advanced at the same time, by the same team, in the same work. And they don't need to be. Instead we exploit the division of labor, as we should. Measurement can advance significantly with little theory, and theory can advance significantly with little measurement. Still each disciplines the other in the long run, and science advances.
The theory/measurement pendulum tends to swing widely.  If the 1970's and 1980's were a golden age of economic theory, recent decades have witnessed explosive advances in economic measurement linked to the explosion of Big Data.  But Big Data presents both measurement opportunities and pitfalls -- dense fogs of "digital exhaust" -- which fresh theory will help us penetrate.  Theory will be back.

[Related earlier posts:  "Big Data the Big Hassle" and "Theory gets too Much Respect, and Measurement Doesn't get Enough"]

Saturday, August 5, 2017

Commodity Connectedness


Forthcoming paper here
We study connectedness among the major commodity markets, summarizing and visualizing the results using tools from network science.

Among other things, the results reveal clear clustering of commodities into groups closely related to the traditional industry taxonomy, but with some notable differences.


Many thanks to Central Bank of Chile for encouraging and supporting the effort via its 2017 Annual Research Conference.